Self-aligned gate electrode for hydrogen-terminated diamond field-effect transistors with a hexagonal boron nitride gate insulator

Author:

Sasama Yosuke1ORCID,Iwasaki Takuya2ORCID,Monish Mohammad2ORCID,Watanabe Kenji3ORCID,Taniguchi Takashi2ORCID,Takahide Yamaguchi24ORCID

Affiliation:

1. International Center for Young Scientists, National Institute for Materials Science 1 , Tsukuba 305-0044, Japan

2. Research Center for Materials Nanoarchitectonics, National Institute for Materials Science 2 , Tsukuba 305-0044, Japan

3. Research Center for Electronic and Optical Materials, National Institute for Materials Science 3 , Tsukuba 305-0044, Japan

4. University of Tsukuba 4 , Tsukuba 305-8571, Japan

Abstract

Diamond electronic devices have attracted significant interest owing to their excellent semiconducting properties. We recently demonstrated that eliminating surface-transfer doping enhances carrier mobility and achieves normally off behavior in diamond field-effect transistors (FETs) with a hexagonal boron nitride (h-BN) gate insulator. In our previous study, the gate electrode was overlapped onto the source/drain electrodes to prevent the increase in access resistance caused by excluding surface-transfer doping. However, it is known that gate overlap increases parasitic capacitance and gate leakage current. In this study, we developed a technique for self-aligning the gate electrode with the edge of h-BN using oblique-angle deposition. The diamond FET with a self-aligned gate electrode exhibits optimal FET characteristics, including high mobility of ≈ 400 cm2V−1s−1, low sheet resistance of 2.4 kΩ, and output characteristics demonstrating pinch-off behavior. Furthermore, the capacitance-voltage characteristics clearly indicate distinct ON and OFF states, validating the efficacy of this technique. This method enables the fabrication of diamond/h-BN FETs with no gate overlap and without increasing access resistance, making it a promising approach for developing high-speed, low-loss diamond FETs with a wide range of applications.

Funder

New Energy and Industrial Technology Development Organization

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3