Electrochemical-tunable and mesostructure-dependent abrupt-to-progressive conversion in fibroin-based transient memristor

Author:

Zhao Xinhui12,Chang Ke12,Liu Binbin12,Jiang Kang'an12,Hu Chenhua12,Wang Ying3,Wang Hui12ORCID

Affiliation:

1. State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China

2. Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China

3. Center for Advanced Electronic Materials and Devices, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China

Abstract

The unique degradability and excellent biocompatibility make silk fibroin an attractive material for flexible transient memristors. Materials functionalization from the mesoscopic reconstruction view is a promising route to expand functions and create new types of electronic devices. Here, the transformation of the abrupt-to-progressive switching behavior in fibroin-based memristors is achieved via annealing to adjust the mesoscopic structure. Through electrical test and scanning electron microscope analysis, we study the electrochemical dynamics of metal nanoparticles in switching medium with different mesoscopic structures and directly reveal the microscopic origin of the abrupt-to-progressive transformation in fibroin-based transient memristors. The device exhibits abrupt resistive switching behaviors when the mobility and redox rate are high and displays progressive resistive switching behaviors under the low mobility and low redox rate condition. These findings reveal the microscopic origins of abrupt-to-progressive conversion and provide general guidance for designing high-performance memory devices and artificial synapses.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3