A plano–convex thick-lens velocity map imaging apparatus for direct, high resolution 3D momentum measurements of photoelectrons with ion time-of-flight coincidence

Author:

Davino Michael1ORCID,McManus Edward1ORCID,Helming Nora G.1ORCID,Cheng Chuan2ORCID,Moǧol Gönenç2ORCID,Rodnova Zhanna1ORCID,Harrison Geoffrey1ORCID,Watson Kevin1,Weinacht Thomas2ORCID,Gibson George N.1ORCID,Saule Tobias1ORCID,Trallero-Herrero Carlos A.1ORCID

Affiliation:

1. Department of Physics, University of Connecticut 1 , Storrs, Connecticut 06269, USA

2. Department of Physics and Astronomy, Stony Brook University 2 , Stony Brook, New York 11794, USA

Abstract

Since their inception, velocity map imaging (VMI) techniques have received continued interest in their expansion from 2D to 3D momentum measurements through either reconstructive or direct methods. Recently, much work has been devoted to the latter of these by relating electron time-of-flight (TOF) to the third momentum component. The challenge is having a timing resolution sufficient to resolve the structure in the narrow (<10 ns) electron TOF spread. Here, we build upon the work in VMI lens design and 3D VMI measurement by using a plano–convex thick-lens (PCTL) VMI in conjunction with an event-driven camera (TPX3CAM) providing TOF information for high resolution 3D electron momentum measurements. We perform simulations to show that, with the addition of a mesh electrode to the thick-lens geometry, the resulting plano–convex electrostatic field extends the detectable electron cutoff energy range while retaining the high resolution. This design also extends the electron TOF range, allowing for a better momentum resolution along this axis. We experimentally demonstrate these capabilities by examining above-threshold ionization in xenon, where the apparatus is shown to collect electrons of energy up to ∼7 eV with a TOF spread of ∼30 ns, both of which are improved compared to a previous work by factors of ∼1.4 and ∼3.75, respectively. Finally, the PCTL-VMI is equipped with a coincident ion TOF spectrometer, which is shown to effectively extract unique 3D momentum distributions for different ionic species in a gas mixture. These techniques have the potential to lend themselves to more advanced measurements involving systems where the electron momentum distributions possess non-trivial symmetries.

Funder

Air Force Office of Scientific Research

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3