Affiliation:
1. Aalto University, Department of Electronics and Nanoengineering 1 , Tietotie 3, 02150 Espoo, Finland
2. Department of Physics and Astronomy, University of Turku 2 , FI-20014 Turku, Finland
Abstract
The excellent field-effect passivation provided by aluminum oxide (Al2O3) on germanium surfaces relies on the high negative fixed charge present in the film. However, in many applications, a neutral or a positive charge would be preferred. Here, we investigate the surface passivation performance and the charge polarity of plasma-enhanced atomic layer deposited (PEALD) silicon oxide (SiO2) on Ge. The results show that even a 3 nm thick PEALD SiO2 provides a positive charge density (Qtot, ∼2.6 × 1011 cm−2) and a relatively good surface passivation (maximum surface recombination velocity SRVmax ∼16 cm/s). When the SiO2 thin film is capped with an ALD Al2O3 layer, the surface passivation improves further and a low midgap interface defect density (Dit) of ∼1 × 1011 eV−1 cm−2 is achieved. By varying the SiO2 thickness under the Al2O3 capping, it is possible to control the Qtot from virtually neutral (∼2.8 × 1010 cm−2) to moderately positive (∼8.5 × 1011 cm−2) values. Consequently, an excellent SRVmax as low as 1.3 cm/s is obtained using optimized SiO2/Al2O3 layer thicknesses. Finally, the origin of the positive charge as well as the interface defects related to PEALD SiO2 are discussed.
Funder
Horizon 2020 Framework Programme
Business Finland
Academy of Finland
Finnish Research Impact Foundation
Subject
Physics and Astronomy (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献