Multiscale electric-field imaging of polarization vortex structures in PbTiO3/SrTiO3 superlattices

Author:

Addiego Christopher1ORCID,Zorn Jacob A.2,Gao Wenpei3ORCID,Das Sujit4ORCID,Guo Jiaqi1ORCID,Qu Chengqing1ORCID,Zhao Liming1ORCID,Martin Lane W.45ORCID,Ramesh Ramamoorthy4ORCID,Chen Long-Qing2ORCID,Pan Xiaoqing136ORCID

Affiliation:

1. Department of Physics and Astronomy, University of California 1 , Irvine, California 92697, USA

2. Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University 2 , University Park, Pennsylvania 16802, USA

3. Department of Materials Science and Engineering, University of California 3 , Irvine, California 92697, USA

4. Department of Materials Science and Engineering, University of California 4 , Berkeley, California 94720, USA

5. Materials Sciences Division, Lawrence Berkeley National Laboratory 5 , Berkeley, California 94720, USA

6. Irvine Materials Research Institute, University of California 6 , Irvine, California 92697, USA

Abstract

In ferroelectric heterostructures, the interaction between intrinsic polarization and the electric field generates a rich set of localized electrical properties. The local electric field is determined by several connected factors, including the charge distribution of individual unit cells, the interfacial electromechanical boundary conditions, and chemical composition of the interfaces. However, especially in ferroelectric perovskites, a complete description of the local electric field across micro-, nano-, and atomic-length scales is missing. Here, by applying four-dimensional scanning transmission electron microscopy (4D STEM) with multiple probe sizes matching the size of structural features, we directly image the electric field of polarization vortices in (PbTiO3)16/(SrTiO3)16 superlattices and reveal different electric field configurations corresponding to the atomic scale electronic ordering and the nanoscale boundary conditions. The separability of two different fields probed by 4D STEM offers the possibility to reveal how each contributes to the electronic properties of the film.

Funder

U.S. Department of Energy

National Science Foundation

Institute for Computational and Data Sciences Advanced CyberInfrastructure

Extreme Science and Engineering Discovery Environment

3M Incorporated

Publisher

AIP Publishing

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3