Hysteresis erasure in ZIF-8@ZnO nanorod array field-effect transistors through oxygen chemisorption-induced depolarization

Author:

Luan Pengyan1ORCID,Yang Zhenxin1ORCID,Liang Zheng1ORCID,Li Xiaoliang1ORCID,Chen Nan1ORCID,Li Fushun1ORCID,Li Xuanhe1ORCID,Su Jiale1ORCID,Lu Zheng-Hong12ORCID,Zhu Qiang1ORCID

Affiliation:

1. Key Laboratory of Yunnan Provincial Higher Education Institutions for Optoelectronics Device Engineering, School of Physics and Astronomy, Yunnan University 1 , Kunming 650504, China

2. Department of Materials Science and Engineering, University of Toronto 2 , Toronto, Ontario M5S 3E4, Canada

Abstract

Zeolitic imidazolate framework-8 (ZIF-8) is a versatile candidate for next-generation electronics owing to its adjustable lattice and physicochemical properties. However, the utilization of ZIF-8 for the fabrication of solid-state electronics and circuit components, such as field-effect transistors (FETs), has not been realized thus far, primarily due to ongoing debates surrounding its electrical properties. In this work, we fabricated n-type FETs using ZIF-8@ZnO nanorod arrays. A significant hysteresis behavior was observed. It was demonstrated that this hysteresis cannot be assigned to the well-established ferroelectric effect but rather to the polarization of ZIF-8, wherein the electric field of the gate aligns the dipole of 2-methylimidazole through molecular orientation rotation. It was clarified that the process of annealing in air can result in the chemisorption of oxygen on methylimidazole, leading to a limitation in the rotation of methylimidazole. This restriction ultimately causes the depolarization of ZIF-8, resulting in the erasure of hysteresis. This study unfolds the tunable hysteresis behavior of ZIF-8 and its sensibility to oxygen, thereby highlighting the potential applications of ZIF-8 in FETs, nonvolatile memories, and gas sensors.

Funder

National Natural Science Foundation of China

Applied Basic Research Foundation of Yunnan Province

Yunnan University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3