Insight into interface electrical properties of metal–oxide–semiconductor structures fabricated on Mg-implanted GaN activated by ultra-high-pressure annealing

Author:

Wada Yuhei1,Mizobata Hidetoshi1ORCID,Nozaki Mikito1,Kobayashi Takuma1ORCID,Hosoi Takuji1ORCID,Kachi Tetsu2ORCID,Shimura Takayoshi1ORCID,Watanabe Heiji1ORCID

Affiliation:

1. Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

2. Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Aichi 464-8601, Japan

Abstract

GaN-based metal–oxide–semiconductor (MOS) devices, such as n- and p-type capacitors and inversion- and accumulation-type p-channel field effect transistors (MOSFETs), were fabricated by Mg-ion implantation and ultra-high-pressure annealing (UHPA) under 1-GPa nitrogen pressure. Even though UHPA was conducted at 1400 °C without protective layers on GaN surfaces, n-type MOS capacitors with SiO2 gate dielectrics formed on non-ion-implanted regions exhibited well-behaved capacitance–voltage characteristics with negligible hysteresis and frequency dispersion, indicating distinct impact of UHPA in suppressing surface degradation during high-temperature annealing. Efficient activation of the implanted Mg dopants and reasonable hole accumulation at the SiO2/GaN interfaces were also achieved for p-type capacitors by UHPA, but the fabricated inversion- and accumulation-type p-channel GaN MOSFETs were hardly turned on. The findings reveal extremely low hole mobility at GaN MOS interfaces and suggest an intrinsic obstacle for the development of GaN-based MOS devices.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3