Affiliation:
1. School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China
2. Laboratory of Quantum Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
Abstract
Due to the difficulty of forming a low Schottky barrier at the interface of a metal/SiC contact, preparing Ohmic contacts is still a key technical problem in developing SiC devices. In this paper, the effects of MoS2 intercalation on the interface properties of metal/SiC (Al, Ag, Ti, Au, and Mg) systems were investigated by first-principles calculation. The calculations show that all the metal/SiC contacts exhibit p-type Schottky contacts with strong Fermi level pinning (FLP) at the interfaces. After inserting a layer of MoS2, the Schottky barrier heights are significantly reduced. All the metal/MoS2/SiC systems are tuned to be n-type Ohmic contacts. By calculating and analyzing electron localization functions, projected band structure, partial density of states, and planar-averaged charge density difference, the Ohmic contact formation mechanism may be due to the saturation of dangling bonds of the SiC surface, the reduction in metal-induced gap states, the formation of interface dipole layer, and the shift of FLP position to the interface of metal/MoS2.
Funder
National Natural Science Foundation of China
Xuzhou Science and Technology Program
Qinglan Project of Jiangsu Province of China
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献