Analysis of single event effects by heavy ion irradiation of Ga2O3 metal–oxide–semiconductor field-effect transistors

Author:

Ma Hongye12,Wang Wentao12ORCID,Cai Yuncong12,Wang Zhengxing12,Zhang Tao12ORCID,Feng Qian12,Chen Yiqiang3ORCID,Zhang Chunfu12,Zhang Jincheng12ORCID,Hao Yue12ORCID

Affiliation:

1. State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University 1 , Xi’an 710071, China

2. Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University 2 , Xi’an 710071, China

3. Science and Technology on Reliability Physics and Applications Technology of Electronic Component Laboratory 3 , Guangzhou 510000, China

Abstract

The model of lateral β-Ga2O3 metal–oxide–semiconductor field-effect transistor (MOSFET) was established using Sentaurus Technology Computer Aided Design software. The gate-to-drain distance of the device was 13.7 μm, and the breakdown voltage was 1135 V. The single event effect simulation model caused by heavy ion irradiation was introduced, and the effects of heavy ions’ incident position, angle, drain bias voltage, and linear energy transfer on the single event effect were studied. It is found that x = 7.7 μm is the sensitive location of the single event effect at the gate corner near the drain side and the peak value of the transient current is 177 mA/mm. The effect of the terminal structure of the field plate on the transient effect of the single event effect of β-Ga2O3 MOSFET is studied. It is also found that the sensitive position of the single event effect of the conventional structure, gate-field plate structure, and gate–source composite field plate structure is around x = 7.7 μm when VDS = 10 V. The peak transient currents obtained are 177, 161, and 148 mA/mm. The single event effect pulse current of the three structures increases with an increase in the drain bias voltage, while the peak pulse current of the conventional structure is larger than that of the gate-field plate structure and the gate–source composite structure. The research shows that the terminal structure of the field plate is reliable means to reduce the single particle effect.

Funder

National Natural Science Foundation of China

Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3