Oxide overlayer formation on sputtered ScAlN film exposed to air

Author:

Li Minghua1ORCID,Lin Huamao1ORCID,Hu Kan1,Zhu Yao1ORCID

Affiliation:

1. Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore 138046, Singapore

Abstract

There has been much interest in developing scandium doped aluminum nitride (ScAlN) thin films for use in electronic devices, due to their excellent piezoMEMS response, large spontaneous polarization, and the capability for CMOS-compatible integration. As with the undoped AlN film, the formation of an oxide overlayer on the air-exposed ScAlN film can modulate its surface structure and the electrical properties. In this study, we investigate the effects of surface oxidation on a ScAlN film by characterizing the film microstructure and the elemental chemical states. We found that amorphous phase and small crystallites co-exist in the oxide overlayer, which is remarkably different from the columnar (0002) crystalline texture in the bulk ScAlN film. X-ray photoelectron spectroscopy core-level analyses confirm the formation of Al–O and Sc–O bonds. Moreover, the valence band maximum of the oxide overlayer shifts toward a higher binding energy, indicating a high energy barrier at the ScAlN/metal interface. Our results suggest that ScAlN surface oxidation is a chemical reaction-driven and self-limited process.

Funder

Science and Engineering Research Council

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3