Retinol homeostasis in lambs given low and high intakes of vitamin A

Author:

Donoghue Susan,Kronfeld David S.,Sklan David

Abstract

1. Four groups of lambs were fed on a low-carotene basal diet. One group received no supplemental vitamin A (mildly deficient). Remaining groups were supplemented daily with vitamin A acetate equivalent to 100 (control) 9000 (mildly intoxicated) and 18000 (severely intoxicated) μg retinol/kg body-weight. After 16 weeks lambs received a bolus of[15−3H]retinol intravenously; blood, urine and faeces were sampled for 48 h.2. Plasma retinol was complexed to a protein of 20000 molecular weight (MW), which in turn was complexed to a protein of 65000 MW; these proteins correspond respectively to retinol-binding protein and prealbumin. Plasma retinol concentration reached plateau values in intoxicated lambs, but plasma retinyl ester concentrations increased rapidly when liver contents of both retinol and retinyl esters exceeded approximately 10 and 100 mg respectively and kidney contents of both retinol and retinyl esters exceeded 30 μg. Labelled compounds, more polar than retinol, were found in plasma; their concentration increased tenfold in intoxicated lambs within 48 h.3. Plasma retinol transport rates were 0·1, 10·5 and 11·8 times control values, and clearance rates were 0·3, 14·1 and 14·3 times control values in mildly-deficient, and mildly- or severely-intoxicated lambs respectively. Turnover of retinol increased rapidly when liver contents of retinol and retinyl esters exceeded approximately 10 and 100 mg respectively and kidney contents of both retinol and retinyl esters exceeded approximately 30 μg. Plasma clearance of retinyl esters was unchanged with intake. Faecal excretion of tracer increased linearly with plasma retinol clearance.4. Our findings identify, several variables that appear to be involved in retinol homeostasis, including plasma retinol clearance and excretion.

Publisher

Cambridge University Press (CUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3