Thermal Resistance Parameters for Shiga Toxin–Producing Escherichia coli in Apple Juice

Author:

ENACHE ELENA1,MATHUSA EMILY C.1,ELLIOTT PHILIP H.1,BLACK D. GLENN1,CHEN YUHUAN1,SCOTT VIRGINIA N.1,SCHAFFNER DONALD W.2

Affiliation:

1. 1Grocery Manufacturers Association, 1350 I Street N.W., Suite 300, Washington, D.C. 20005

2. 2Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA

Abstract

The purpose of the present study was to determine the heat resistance of six non-O157 Shiga toxin–producing Escherichia coli (STEC) serotypes in comparison to E. coli O157:H7 in single-strength apple juice without pulp. The thermal parameters for stationary-phase and acid-adapted cells of E. coli strains from serogroups O26, O45, O103, O111, O121, O145, and O157:H7 were determined by using an immersed coil apparatus. The most heat-sensitive serotype in the present study was O26. Stationary-phase cells for serotypes O145, O121, and O45 had the highest D56°C-value among the six non-O157 serotypes studied, although all were significantly lower (P < 0.05) than that of E. coli O157:H7. At 60°C E. coli O157:H7 and O103 demonstrated the highest D-values (1.37 ± 0.23 and 1.07 ± 0.03 min, respectively). The D62°C for the most heat-resistant strain belonging to the serotype O145 was similar (P > 0.05) to that for the most resistant O157:H7 strain (0.61 ± 0.17 and 0.60 ± 0.09 min, respectively). The heat resistance for stationary-phase cells was generally equal to or higher than that of acid-adapted counterparts. Although E. coli O157:H7 revealed D-values similar to or higher than the individual six non-O157 STEC serotypes in apple juice, the z-values for most non-O157 STEC tested strains were greater than those of E. coli O157:H7. When data were used to calculate heat resistance parameters at a temperature recommended in U.S. Food and Drug Administration guidance to industry, the D71.1°C for E. coli O157:H7 and non-O157 STEC serotypes were not significantly different (P > 0.05).

Publisher

International Association for Food Protection

Subject

Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3