Is Betelgeuse Really Rotating? Synthetic ALMA Observations of Large-scale Convection in 3D Simulations of Red Supergiants

Author:

Ma 马 Jing-Ze 竟泽ORCID,Chiavassa AndreaORCID,de Mink Selma E.ORCID,Valli RuggeroORCID,Justham StephenORCID,Freytag BerndORCID

Abstract

Abstract The evolved stages of massive stars are poorly understood, but invaluable constraints can be derived from spatially resolved observations of nearby red supergiants, such as Betelgeuse. Atacama Large Millimeter/submillimeter Array (ALMA) observations of Betelgeuse showing a dipolar velocity field have been interpreted as evidence for a projected rotation rate of about 5 km s−1. This is 2 orders of magnitude larger than predicted by single-star evolution, which led to suggestions that Betelgeuse is a binary merger. We propose instead that large-scale convective motions can mimic rotation, especially if they are only partially resolved. We support this claim with 3D CO5BOLD simulations of nonrotating red supergiants that we postprocessed to predict ALMA images and SiO spectra. We show that our synthetic radial velocity maps have a 90% chance of being falsely interpreted as evidence for a projected rotation rate of 2 km s−1 or larger for our fiducial simulation. We conclude that we need at least another ALMA observation to firmly establish whether Betelgeuse is indeed rapidly rotating. Such observations would also provide insight into the role of angular momentum and binary interaction in the late evolutionary stages. The data will further probe the structure and complex physical processes in the atmospheres of red supergiants, which are immediate progenitors of supernovae and are believed to be essential in the formation of gravitational-wave sources.

Funder

Agence Nationale de la Recherche

EC ∣ ERC ∣ HORIZON EUROPE European Research Council

Deutsche Forschungsgemeinschaft

Publisher

American Astronomical Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3