Numerical simulations of the random angular momentum in convection: Implications for supergiant collapse to form black holes

Author:

Antoni Andrea1ORCID,Quataert Eliot12ORCID

Affiliation:

1. Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720, USA

2. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

Abstract

ABSTRACT During the core collapse of massive stars that do not undergo a canonical energetic explosion, some of the hydrogen envelope of a red supergiant (RSG) progenitor may infall on to the newborn black hole (BH). Within the athena++ framework, we perform 3D, hydrodynamical simulations of idealized models of supergiant convection and collapse in order to assess whether the infall of the convective envelope can give rise to rotationally supported material, even if the star has zero angular momentum overall. Our dimension-less, polytropic models are applicable to the optically thick hydrogen envelope of non-rotating RSGs and cover a factor of 20 in stellar radius. At all radii, the specific angular momentum due to random convective flows implies associated circularization radii of 10–1500 times the innermost stable circular orbit of the BH. During collapse, the angular momentum vector of the convective flows is approximately conserved and is slowly varying on the time-scale relevant to forming discs at small radii. Our results indicate that otherwise failed explosions of RSGs lead to the formation of rotationally supported flows that are capable of driving outflows to large radii and powering observable transients. When the BH is able to accrete most of the hydrogen envelope, the final BH spin parameter is ∼ 0.5, even though the star is non-rotating. For fractional accretion of the envelope, the spin parameter is generally lower and never exceeds 0.8. We discuss the implications of our results for transients produced by RSG collapse to a black hole.

Funder

University of California

National Science Foundation

Simons Foundation

Gordon and Betty Moore Foundation

Princeton University

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3