Properties of self-excited pulsations in 3D simulations of AGB stars and red supergiants

Author:

Ahmad A.ORCID,Freytag B.ORCID,Höfner S.ORCID

Abstract

Context. The characteristic variability of cool giants and supergiants is attributed to a combination of stellar pulsation and large-scale convective flows. Full 3D radiation-hydrodynamical modelling is an essential tool for understanding the nature of these dynamical processes. The parameter space in our 3D model grid of red giants has expanded in recent years. These models can provide many insights on the nature and properties of the pulsations, including the interplay between convection and pulsations. Aims. We treat 3D dynamical models of asymptotic giant branch (AGB) stars and red supergiants (with current masses 1 MM* ≤ 12 M) similar to observational data. We aim to explore the relation between stellar parameters and the properties of the self-excited pulsations. Methods. Output from global ‘star-in-a-box’ models computed with the CO5BOLD radiation-hydrodynamics code were analysed, particularly in regards to the pulsation properties, to find possible correlations with input and emergent stellar parameters. The fast Fourier transform was applied to spherically averaged mass flows to identify possible radial pulsation periods beneath the photosphere of the modelled stars. Stellar parameters were investigated for correlations with the extracted pulsation periods. Results. We find that the pulsation periods varied with the stellar parameters in good agreement with the current expectations. The pulsation periods follow Ritter’s period-mean density relation well and our AGB models agree with period-luminosity relations derived from observations. A mass estimate formula was derived from the 3D models, relating the stellar mass to the fundamental mode pulsation period and the stellar radius. Conclusions. While the non-linearity of the interplay between the self-excited pulsations and the self-consistent convection complicates analyses, the resulting correlations are in good agreement with respect to current theoretical and observational understandings.

Funder

European Research Council

Swedish Research Council

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating episodic mass loss in evolved massive stars;Astronomy & Astrophysics;2024-09

2. Interacting supernovae from wide massive binary systems;Astronomy & Astrophysics;2024-05

3. The formation and cosmic evolution of dust in the early Universe: I. Dust sources;The Astronomy and Astrophysics Review;2024-04-22

4. Signatures of convection in the atmospheres of cool evolved stars;Living Reviews in Computational Astrophysics;2024-03-21

5. The nature of medium-period variables on the extreme horizontal branch;Astronomy & Astrophysics;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3