ALMA High-frequency Long Baseline Campaign in 2021: Highest Angular Resolution Submillimeter Wave Images for the Carbon-rich Star R Lep

Author:

Asaki YoshiharuORCID,Maud Luke T.ORCID,Francke HaroldORCID,Nagai HiroshiORCID,Petry DirkORCID,Fomalont Edward B.ORCID,Humphreys ElizabethORCID,Richards Anita M. S.ORCID,Wong Ka TatORCID,Dent WilliamORCID,Hirota AkihikoORCID,Fernandez Jose Miguel,Takahashi SatokoORCID,Hales Antonio S.ORCID

Abstract

Abstract The Atacama Large Millimeter/submillimeter Array (ALMA) was used in 2021 to image the carbon-rich evolved star R Lep in Bands 8–10 (397–908 GHz) with baselines up to 16 km. The goal was to validate the calibration, using band-to-band (B2B) phase referencing with a close phase calibrator J0504-1512, 1.°2 from R Lep in this case, and the imaging procedures required to obtain the maximum angular resolution achievable with ALMA. Images of the continuum emission and the hydrogen cyanide (HCN) maser line at 890.8 GHz, from the J = 10−9 transition between the (1110) and (0400) vibrationally excited states, achieved angular resolutions of 13, 6, and 5 mas in Bands 8–10, respectively. Self-calibration (self-cal) was used to produce ideal images to compare with the B2B phase referencing technique. The continuum emission was resolved in Bands 9 and 10, leaving too little flux for the self-cal of the longest baselines, so these comparisons are made at coarser resolution. Comparisons showed that B2B phase referencing provided phase corrections sufficient to recover 92%, 83%, and 77% of the ideal image continuum flux densities. The HCN maser was sufficiently compact to obtain self-cal solutions in Band 10 for all baselines (up to 16 km). In Band 10, B2B phase referencing as compared to the ideal images recovered 61% and 70% of the flux density for the HCN maser and continuum, respectively.

Funder

EC ∣ European Research Council

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3