Search for Stellar Flybys in the Sco-Cen OB Association with the Gaia DR2

Author:

Ma YilunORCID,De Rosa Robert J.ORCID,Kalas PaulORCID

Abstract

Abstract High-contrast imaging studies of debris disks have revealed a significant diversity in their morphologies, including large-scale asymmetries. Theories involving stellar flybys, an external source of gravitational disturbance, have offered a plausible explanation for the origin of these morphological variations. Our study is an experiment to gain empirical evidence that has been lacking from such theories. We explore this paradigm by using astrometric and radial velocity measurements from the Gaia DR2 and ground-based observations to trace the trajectories of 625 stars in the Sco-Cen OB association from 5 Myr in the past to 2 Myr in the future. We identified 119 stars that had at least one past flyby event occurring within one Hill radius, and 23 of these experienced flybys within 0.5 Hill radii. We found no evidence of a significant correlation between the presence of flyby events and infrared excess detections, although the sample is not uniformly sensitive to infrared excess emission. Ten stars that had past flyby events host resolved circumstellar disks that appear relatively symmetric in the existing data except for the circumbinary disk surrounding HD 106906. We determined the trajectory and relative velocity of each of these flyby events and compared these to the geometry of the spatially resolved disks. Future work is needed to measure the kinematics of lower-mass stars and to improve sensitivity to circumstellar disks for the entire sample.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flybys in debris disk systems withGaiaeDR3;Astronomy & Astrophysics;2023-02-28

2. Unbound stars hold the key to young star cluster history;Astronomy & Astrophysics;2023-02-20

3. Close encounters: How stellar flybys shape planet-forming discs;The European Physical Journal Plus;2023-01-09

4. Stellar Flyby Analysis for Spiral Arm Hosts with Gaia DR3;The Astrophysical Journal Supplement Series;2022-12-01

5. Analysis of the arm-like structure in the outer disk of PDS 70;Astronomy & Astrophysics;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3