Unbound stars hold the key to young star cluster history

Author:

Arunima Arunima,Pfalzner Susanne,Govind Amith

Abstract

Aims.Gaia delivers the positions and velocities of stars at an unprecedented precision. Therefore, for star clusters, there exists much higher confidence in whether a specific star is a member of a particular cluster or not. However, membership determination is still especially challenging for young star clusters. At ages 2−10 Myr, the gas is expelled, ending the star formation process and leading to their expansion, while at the same time, many former members become unbound. As a first step, we aim to assess the accuracy of the methods commonly used to distinguish between bound and unbound cluster members; after identifying the most suitable technique for this task, we wish to understand which of the two populations is more suited to provide insights into the initial configuration and the dynamical history of a cluster starting from its currently observed properties. Methods. Here, we perform N-body simulations of the dynamics of such young star clusters. We investigate how cluster dynamics and observational limitations affect the recovered information about the cluster from a theoretical perspective. Results. We find that the much-used method of distance and velocity cutoffs for membership determination often leads to false negatives and positives alike. Often observational studies focus on the stars remaining bound. However, bound stars quickly lose the memory of the pre-gas expulsion phase due to their ongoing interaction with their fellow cluster members. Our study shows that it is the unbound stars that hold the key to charting a cluster’s dynamic history. Backtracking unbound stars can provide the original cluster size and determine the time of gas expulsion – two parameters that are currently still poorly constrained. This information is lost in the bound population. In addition, former members are often better indicators for disc lifetimes or initial binary fractions. We apply the backtracking analysis, with varying success, to the clusters: Upper Scorpius and NGC 6530. For highly substructured clusters such as Upper Scorpius, backtracking to the individual subcluster centres will provide better results in future.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3