Analysis of the arm-like structure in the outer disk of PDS 70

Author:

Juillard S.ORCID,Christiaens V.ORCID,Absil O.ORCID

Abstract

Context. Observing dynamical interactions between planets and disks is key to understanding their formation and evolution. Two protoplanets have recently been discovered within the PDS 70 protoplanetary disk, along with an arm-like structure toward the northwest of the star. Aims. Our aim is to constrain the morphology and origin of this arm-like structure, and to assess whether it could trace a spiral density wave caused by the dynamical interaction between the planet PDS 70c and the disk. Methods. We analyzed polarized and angular differential imaging (PDI and ADI) data taken with VLT/SPHERE, spanning six years of observations. The PDI data sets were reduced using the irdap polarimetric data reduction pipeline, while the ADI data sets were processed using mustard, a novel algorithm based on an inverse problem approach to tackle the geometrical biases spoiling the images previously used for the analysis of this disk. Results. We confirm the presence of the arm-like structure in all PDI and ADI data sets, and extract its trace by identifying local radial maxima in azimuthal slices of the disk in each data set. We do not observe a southeast symmetric arm with respect to the disk minor axis, which seems to disfavor the previous hypothesis that the arm is the footprint of a double-ring structure. If the structure traces a spiral density wave following the motion of PDS 70c, we would expect 11°.28−0°.86+2°.20 rotation for the spiral in six years. However, we do not measure any significant movement of the structure. Conclusions. If the arm-like structure is a planet-driven spiral arm, the observed lack of rotation would suggest that the assumption of rigid-body rotation may be inappropriate for spirals induced by planets. We suggest that the arm-like structure may instead trace a vortex appearing as a one-armed spiral in scattered light due to projection effects. The vortex hypothesis accounts for both the lack of observed rotation and the presence of a nearby sub-millimeter continuum asymmetry detected with ALMA. Additional follow-up observations and dedicated hydrodynamical simulations could confirm this hypothesis.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3