Spherical Harmonics for the 1D Radiative Transfer Equation. I. Reflected Light

Author:

Rooney Caoimhe M.ORCID,Batalha Natasha E.ORCID,Marley Mark S.ORCID

Abstract

Abstract A significant challenge in radiative transfer theory for atmospheres of exoplanets and brown dwarfs is the derivation of computationally efficient methods that have adequate fidelity to more precise, numerically demanding solutions. In this work, we extend the capability of the first open-source radiative transfer model for computing the reflected light of exoplanets at any phase geometry, PICASO (Planetary Intensity Code for Atmospheric Spectroscopy Observations). Until now, PICASO has implemented two-stream approaches to the solving the radiative transfer equation for reflected light, in particular following the derivations of Toon et al. In order to improve the model accuracy, we have considered higher-order approximations of the phase functions; namely, we have increased the order of approximation from two to four, using spherical harmonics. The spherical harmonics approximation decouples spatial and directional dependencies by expanding the intensity and phase function into a series of spherical harmonics, or Legendre polynomials, allowing for analytical solutions for low-order approximations to optimize computational efficiency. We rigorously derive the spherical harmonics method for reflected light and benchmark the four-term method (SH4) against Toon et al. and two independent and higher-fidelity methods (CDISORT and doubling method). On average, the SH4 method provides an order-of-magnitude increase in accuracy, compared to Toon et al. Finally, we implement SH4 within PICASO and observe only a modest increase in computational time, compared to two-stream methods (20% increase).

Funder

NASA ∣ Science Mission Directorate

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3