Spherical Harmonics for the 1D Radiative Transfer Equation. II. Thermal Emission

Author:

Rooney Caoimhe M.ORCID,Batalha Natasha E.ORCID,Marley Mark S.ORCID

Abstract

Abstract Approximate methods for radiative transfer equations that are fast, reliable, and accurate are essential for the understanding of atmospheres of exoplanets and brown dwarfs. The simplest and most popular choice is the “two-stream method,” which is often used to produce simple yet effective models for radiative transfer in scattering and absorbing media. Toon et al. (hereafter, Toon89) outlined a two-stream method for computing reflected light and thermal spectra that was later implemented in the open-source radiative transfer model PICASO. In Part I of this series, we developed an analytical spherical harmonics method for solving the radiative transfer equation for reflected solar radiation that was implemented in PICASO to increase the accuracy of the code by offering a higher-order approximation. This work is an extension of this spherical harmonics derivation, to study thermal emission spectroscopy. We highlight the model differences in the approach for thermal emission and benchmark the four-term method (SH4) against Toon89 and a high-stream discrete-ordinates method, CDISORT. By comparing the spectra produced by each model, we demonstrate that the SH4 method provides a significant increase in accuracy, compared to Toon89, which can be attributed to the increased order of approximation and to the choice of phase function. We also explore the trade-off between computational time and model accuracy. We find that our four-term method is twice as slow as our two-term method, but is up to five times more accurate, when compared with CDISORT. Therefore, SH4 provides excellent improvement in model accuracy with minimal sacrifice in numerical expense.

Funder

NASA ∣ SMD ∣ Astrophysics Division

Publisher

American Astronomical Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3