Implementing the Delta-Four-Stream Approximation for Solar Radiation Computations in an Atmosphere General Circulation Model

Author:

Ayash Tarek1,Gong Sunling2,Jia Charles Q.1

Affiliation:

1. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada

2. Air Quality Research Branch, Meteorological Service of Canada, Toronto, Ontario, Canada

Abstract

Abstract Proper quantification of the solar radiation budget and its transfer within the atmosphere is of utmost importance in climate modeling. The delta-four-stream (DFS) approximation has been demonstrated to offer a more accurate computational method of quantifying the budget than the simple two-stream approximations widely used in general circulation models (GCMs) for radiative-transfer computations. Based on this method, the relative improvement in the accuracy of solar flux computations is investigated in the simulations of the third-generation Canadian Climate Center atmosphere GCM. Relative to the computations of the DFS-modified radiation scheme, the GCM original-scheme whole-sky fluxes at the top of the atmosphere (TOA) show the largest underestimations at high latitudes of a winter hemisphere on the order of 4%–6% (monthly means), while the largest overestimations of the same order are found over equatorial regions. At the surface, even higher overestimations are found, exceeding 20% at subpolar regions of a winter hemisphere. Flux differences between original and DFS schemes are largest in the tropics and at high latitudes, where the monthly zonal means and their dispersions are within 5 W m−2 at the TOA and 10 W m−2 at the surface in whole sky, but differences may be as large as 20 and −40 W m−2. In clear sky, monthly zonal means and their dispersions remain within 2 W m−2, but may be as large as 25 and −12 W m−2. Such differences are found to be mostly determined by variations in cloud optical depth and solar zenith angle, and by aerosol loading in a clear sky.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3