Estimation of Surface and Top-of-Atmosphere Shortwave Irradiance in Biomass-Burning Regions during SCAR-B

Author:

Christopher Sundar A.1,Li Xiang1,Welch Ronald M.1,Reid Jeffrey S.2,Hobbs Peter V.3,Eck Thomas F.4,Holben Brent5

Affiliation:

1. Department of Atmospheric Sciences, University of Alabama in Huntsville, Huntsville, Alabama

2. Atmospheric Propagation Branch-D858 Branch, Space and Naval Warfare System Center, San Diego, California

3. Department of Atmospheric Sciences, University of Washington, Seattle, Washington

4. Raytheon Corporation, and NASA Goddard Space Flight Center, Greenbelt, Maryland

5. Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract Using in situ measurements of aerosol optical properties and ground-based measurements of aerosol optical thickness (τs) during the Smoke, Clouds and Radiation—Brazil (SCAR-B) experiment, a four-stream broadband radiative transfer model is used to estimate the downward shortwave irradiance (DSWI) and top-of-atmosphere (TOA) shortwave aerosol radiative forcing (SWARF) in cloud-free regions dominated by smoke from biomass burning in Brazil. The calculated DSWI values are compared with broadband pyranometer measurements made at the surface. The results show that, for two days when near-coincident measurements of single-scattering albedo ω0 and τs are available, the root-mean-square errors between the measured and calculated DSWI for daytime data are within 30 W m−2. For five days during SCAR-B, however, when assumptions about ω0 have to be made and also when τs was significantly higher, the differences can be as large as 100 W m−2. At TOA, the SWARF per unit optical thickness ranges from −20 to −60 W m−2 over four major ecosystems in South America. The results show that τs and ω0 are the two most important parameters that affect DSWI calculations. For SWARF values, surface albedos also play an important role. It is shown that ω0 must be known within 0.05 and τs at 0.55 μm must be known to within 0.1 to estimate DSWI to within 20 W m−2. The methodology described in this paper could serve as a potential strategy for determining DSWI values in the presence of aerosols. The wavelength dependence of τs and ω0 over the entire shortwave spectrum is needed to improve radiative transfer calculations. If global retrievals of DSWI and SWARF from satellite measurements are to be performed in the presence of biomass-burning aerosols on a routine basis, a concerted effort should be made to develop methodologies for estimating ω0 and τs from satellite and ground-based measurements.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference46 articles.

1. Anderson, B. E., and Coauthors, 1996: Aerosols from biomass burning over the southern tropical Atlantic region: Distributions and impact. J. Geophys. Res., 101, 24 117–24 137.

2. Andreae, M. O., 1991: Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate. Global Biomass Burning: Atmospheric, Climatic and Biospheric Implications J. S. Levine, Ed., MIT Press, 3–21.

3. Barkstrom, B., E. Harrison, G. Smith, R. Green, J. Kibler, R. Cess, and the ERBE Science Team, 1989: Earth Radiation Budget Experiment (ERBE) archival and April 1985 results. Bull. Amer. Meteor. Soc., 70, 1254–1262.

4. Charlock, T. P., 1997: Surface and atmospheric radiation budget. Proc. 14th CERES Science Team Meeting, Fort Collins, CO, NASA Langley Research Center.

5. ——, and T. L. Alberta, 1996: The CERES/ARM/GEWEX Experiment (CAGEX) for the retrieval of radiative fluxes with satellite data. Bull. Amer. Meteor. Soc., 77, 2673–2683.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3