Abstract
Abstract
The gravitational harmonics measured from the Juno and Cassini spacecraft help us specify the internal structure and chemical elements of Jupiter and Saturn, respectively. However, we still do not know much about the impact of rotation on the planetary internal structure as well as on their formation. The centrifugal force induced by the rotation deforms the planetary shape and partially counteracts the gravitational force. Thus, rotation will affect the critical core mass of the exoplanet. Once the atmospheric mass becomes comparable to the critical core mass, the planet will enter the runaway accretion phase and become a gas giant. We have confirmed that the critical core masses of rotating planets depend on the stiffness of the polytrope, the outer boundary conditions, and the thickness of the isothermal layer. The critical core mass with the Bondi boundary condition is determined by the surface properties. The critical core mass of a rotating planet will increase with the core gravity (i.e., the innermost density). For the Hill boundary condition, the soft polytrope shares the same properties as planets with the Bondi boundary condition. Because the total mass for planets with the Hill boundary condition increases with the decrease of the polytropic index, a higher core gravity is required for rotating planets. As a result, the critical core mass in the stiff Hill model sharply increases. The rotational effects become more important when the radiative and convective regions coexist. Further, the critical core mass of planets with the Hill (Bondi) boundary increases noticeably as the radiative layer becomes thinner (thicker).
Publisher
American Astronomical Society
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献