Self-gravitating planetary envelopes and the core-nucleated instability

Author:

Béthune William1

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

Abstract

Abstract Planet formation scenarios can be constrained by the ratio of the gaseous envelope mass relative to the solid core mass in the observed exoplanet populations. One-dimensional calculations find a critical (maximal) core mass for quasi-static envelopes to exist, suggesting that envelopes around more massive cores should collapse due to a ‘core-nucleated’ instability. We study self-gravitating planetary envelopes via hydrodynamic simulations, progressively increasing the dimensionality of the problem. We characterize the core-nucleated instability and its non-linear evolution into runaway gas accretion in one-dimensional spherical envelopes. We show that rotationally supported envelopes can enter a runaway accretion regime via polar shocks in a two-dimensional axisymmetric model. This picture remains valid for high-mass cores in three dimensions, where the gas gravity mainly adds up to the core gravity and enhances the mass accretion rate of the planet in time. We relate the core-nucleated instability to the absence of equilibrium connecting the planet to its parent disc and discuss its relevance for massive planet formation.

Funder

Department of Applied Mathematics and Theoretical Physics

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3