Massive Black Hole Binaries from the TNG50-3 Simulation. I. Coalescence and LISA Detection Rates

Author:

Li KunyangORCID,Bogdanović TamaraORCID,Ballantyne David R.ORCID,Bonetti MatteoORCID

Abstract

Abstract We evaluate the cosmological coalescence and detection rates for massive black hole (MBH) binaries targeted by the gravitational wave observatory Laser Interferometer Space Antenna (LISA). Our calculation starts with a population of gravitationally unbound MBH pairs, drawn from the TNG50-3 cosmological simulation, and follows their orbital evolution from kiloparsec scales all the way to coalescence using a semi-analytic model developed in our previous work. We find that for the majority of MBH pairs that coalesce within a Hubble time dynamical friction is the most important mechanism that determines their coalescence rate. Our model predicts an MBH coalescence rate ≲0.45 yr−1 and a LISA detection rate ≲0.34 yr−1. Most LISA detections should originate from 106 to 106.8 M MBHs in gas-rich galaxies at redshifts 1.6 ≤ z ≤ 2.4 and have a characteristic signal-to-noise ratio S/N ∼100. We however find a dramatic reduction in the coalescence and detection rates, as well as the average S/N, if the effects of radiative feedback from accreting MBHs are taken into account. In this case, the MBH coalescence rate is reduced by 78% (to ≲0.1 yr−1), and the LISA detection rate is reduced by 94% (to 0.02 yr−1), whereas the average S/N is ∼10. We emphasize that our model provides a conservative estimate of the LISA detection rates, due to the limited MBH mass range in TNG50-3, consistent with other works in the literature that draw their MBH pairs from cosmological simulations.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3