Abstract
Abstract
The laser interferometer space antenna (LISA), due for launch in the mid 2030s, is expected to observe gravitational waves (GWs) from merging massive black hole binaries (MBHBs). These signals can last from days to months, depending on the masses of the black holes, and are expected to be observed with high signal to noise ratios (SNRs) out to high redshifts. We have adapted the PyCBC software package to enable a template bank search and inference of GWs from MBHBs. The pipeline is tested on the LISA data challenge’s Challenge 2a (‘Sangria’), which contains MBHBs and thousands of galactic binaries (GBs) in simulated instrumental LISA noise. Our search identifies all six MBHB signals with more than
92
%
of the optimal SNR. The subsequent parameter inference step recovers the masses and spins within their
90
%
confidence interval. Sky position parameters have eight high likelihood modes which are recovered but often our posteriors favour the incorrect sky mode. We observe that the addition of GBs biases the parameter recovery of masses and spins away from the injected values, reinforcing the need for a global fit pipeline which will simultaneously fit the parameters of the GB signals before estimating the parameters of MBHBs.
Funder
Medical Research Council
Science and Technology Facilities Council
UK Space Agency
Subject
Physics and Astronomy (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献