Author:
Izquierdo-Villalba David,Colpi Monica,Volonteri Marta,Spinoso Daniele,Bonoli Silvia,Sesana Alberto
Abstract
The gravitational wave (GW) antenna LISA will detect the signal from coalescing massive black hole binaries (MBHBs) of 104 − 107 M⊙, providing clues as to their formation and growth throughout cosmic history. Some of these events will be localised with a precision of several to less than a deg2, enabling the possible identification of their host galaxy. This work explores the properties of the host galaxies of LISA MBHBs below z ≲ 3. We generate a simulated lightcone using the semi-analytical model L-Galaxies applied to the merger trees of the high-resolution N-body cosmological simulation Millennium-II. The model shows that LISA MBHBs are expected to be found in optically dim (r > 20), star-forming (sSFR > 10−10 yr−1), gas-rich (fgas > 0.6), and disc-dominated (B/T < 0.7) low-mass galaxies of stellar masses 108 − 109 M⊙. However, these properties are indistinguishable from those of galaxies harbouring single massive black holes of comparable mass, making it difficult to select LISA hosts among the whole population of low-mass galaxies. Motivated by this, we explore the possibility of using merger signatures to select LISA hosts. We find that 40%−80% of the galaxies housing LISA MBHBs display merger features related to the interaction that brought the secondary MBH to the galaxy. Despite this, around 60% of dwarf galaxies placed in the surroundings of the LISA hosts will show these kinds of features as well, challenging the unequivocal detection of LISA hosts through the search for merger signatures. Consequently, the detection of an electromagnetic transient associated with the MBHB merger will be vital in order to pinpoint the star-forming dwarf galaxy where these binary systems evolve and coalesce.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献