Jet–ISM Interaction in NGC 1167/B2 0258+35, an LINER with an AGN Past

Author:

Fabbiano G.ORCID,Paggi A.ORCID,Morganti R.ORCID,Baloković M.ORCID,Elvis M.ORCID,Mukherjee D.,Meenakshi M.,Siemiginowska A.ORCID,Murthy S. M.,Oosterloo T. A.ORCID,Wagner A. Y.ORCID,Bicknell G.

Abstract

Abstract We report the results of joint Chandra/ACIS—NuSTAR deep observations of NGC 1167, the host galaxy of the young radio jet B2 0258+35. In the ACIS data, we detect X-ray emission, extended both along and orthogonal to the jet. At the end of the southeast radio jet, we find lower-energy X-ray emission that coincides with a region of CO turbulence and fast outflow motions. This suggests that the hot interstellar medium (ISM) may be compressed by the jet and molecular outflow, resulting in more efficient cooling. Hydrodynamic simulations of jet–ISM interaction tailored to NGC 1167 are in agreement with this conclusion and with the overall morphology and spectra of the X-ray emission. The faint hard nuclear source detected with Chandra and the stringent NuSTAR upper limits on the harder X-ray emission show that the active galactic nucleus (AGN) in NGC 1167 is in a very low-accretion state. However, the characteristics of the extended X-ray emission are more consonant to those of luminous Compton-thick (CT) AGNs, suggesting that we may be observing the remnants of a past high accretion rate episode, with sustained strong activity lasting ∼2 × 103 yr. We conclude that NGC1167 is presently a Low-Ionization Nuclear Emission-line Region (LINER) , but was an AGN in the past, given the properties of the extended X-ray emission and their similarity with those of CT AGN extended emission.

Funder

NASA/CXC GO grant

NASA/CXC contract

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3