NGC 2992: Interplay between the multiphase disc, wind, and radio bubbles

Author:

Zanchettin M. V.ORCID,Feruglio C.ORCID,Massardi M.,Lapi A.ORCID,Bischetti M.ORCID,Cantalupo S.,Fiore F.,Bongiorno A.ORCID,Malizia A.ORCID,Marinucci A.,Molina M.,Piconcelli E.ORCID,Tombesi F.ORCID,Travascio A.ORCID,Tozzi G.ORCID,Tripodi R.ORCID

Abstract

We present an analysis of the gas kinematics in NGC 2992 based on VLT/MUSE, ALMA, and VLA data. Our aim is to characterise the disc, the wind, and their interplay in the cold molecular and warm ionised phases. NGC 2992 is a changing-look Seyfert known to host both a nuclear ultrafast outflow (UFO), and an AGN-driven kiloparsec-scale ionised wind. CO(2−1) and Hα arise from a multiphase disc with an inclination of 80 deg and radii of 1.5 and 1.8 kpc, respectively. By modelling the gas kinematics, we find that the velocity dispersion of the cold molecular phase, σgas, is consistent with that of star forming galaxies at the same redshift, except in the inner 600 pc region, and in the region between the cone walls and the disc, where σgas is a factor of 3−4 larger than in star forming galaxies for both the cold molecular and the warm ionised phases. This suggests that a disc–wind interaction locally boosts the gas turbulence. We detect a clumpy ionised wind in Hβ, [O III], Hα, and [N II] distributed in two wide-opening-angle ionisation cones reaching scales of 7 kpc (40 arcsec). The [O III] wind expands with a velocity exceeding −1000 km s−1 in the inner 600 pc, which is a factor of approximately five greater than the previously reported wind velocity. Based on spatially resolved electron density and ionisation parameter maps, we infer an ionised outflow mass of Mof, ion = (3.2 ± 0.3)×107M, and a total ionised outflow rate of of,ion = 13.5 ± 1 M yr−1. We detected ten clumps of cold molecular gas located above and below the disc in the ionisation cones, reaching maximum projected distances of 1.7 kpc and showing projected bulk velocities of up to 200 km s−1. On these scales, the wind is multiphase, with a fast ionised component and a slower molecular one, and a total mass of Mof, ion + mol = 5.8 × 107M, of which the molecular component carries the bulk of the mass, namely Mof, mol = 4.3 × 107M. The dusty molecular outflowing clumps and the turbulent ionised gas are located at the edges of the radio bubbles, suggesting that the bubbles interact with the surrounding medium through shocks, as also supported by the [O I]/Hα ratio. Conversely, both the large opening angle and the dynamical timescale of the ionised wind detected in the ionisation cones on 7 kpc scales indicate that this is not related to the radio bubbles but instead likely associated with a previous AGN episode. Finally, we detect a dust reservoir that is co-spatial with the molecular disc, with a cold dust mass of Mdust = (4.04 ± 0.03)×106M, which is likely responsible for the extended Fe Kα emission seen on 200 pc scales in hard X-rays and interpreted as reflection by cold dust.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3