Young Radio Sources Expanding in Gas-Rich ISM: Using Cold Molecular Gas to Trace Their Impact

Author:

Morganti Raffaella12ORCID,Murthy Suma3ORCID,Guillard Pierre45ORCID,Oosterloo Tom12ORCID,Garcia-Burillo Santiago6

Affiliation:

1. ASTRON, The Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands

2. Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands

3. Joint Institute for VLBI ERIC, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands

4. Institut d’Astrophysique de Paris, Sorbonne Université, CNRS, UMR 7095, 98bis bd Arago, 75014 Paris, France

5. Institut Universitaire de France, Ministère de l’Enseignement Supérieur et de la Recherche, 1 rue Descartes, CEDEX 05, 75231 Paris, France

6. Observatorio Astronómico Nacional (OAN-IGN)-Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid, Spain

Abstract

We present an overview of the results obtained from the study of the resolved distribution of molecular gas around eight young (≲106yr), peaked-spectrum radio galaxies. Tracing the distribution and kinematics of the gas around these radio sources allows us to trace the interplay between the jets and the surrounding medium. For three of these sources, we present new CO(1-0) observations, obtained with the Northern Extended Millimeter Array (NOEMA) with arcsecond resolution. In two of these targets, we also detected CN lines, both in emission and absorption. Combining the new observations with already published data, we discuss the main results obtained. Although we found that a large fraction of the cold molecular gas was distributed in disc-like rotating structures, in the vast majority of the sources, high turbulence and deviations from purely quiescent gas (including outflows) were observed in the region co-spatial with the radio continuum emission. This suggests the presence of an interaction between radio plasma and cold molecular gas. In particular, we found that newly born and young radio jets, even those with low power i.e., Pjet < 1045 erg s−1), are able to drive massive outflows of cold, molecular gas. The outflows are, however, limited to the sub-kpc regions and likely short lived. On larger scales (a few kpc), we observed cases where the molecular gas appears to avoid the radio lobes and, instead, wraps around them. The results suggest the presence of an evolutionary sequence, which is consistent with previous simulations, where the type of impact of the radio plasma changes as the jet expands, going from a direct jet-cloud interaction able to drive gas outflows on sub-kpc scales to a more gentle pushing aside of the gas, increasing its turbulence and likely limiting its cooling on kpc scales. This effect can be mediated by the cocoon of shocked gas inflated by the jet–cloud interactions. Building larger samples of young and evolved radio sources for observation at a similar depth and spatial resolution to test this scenario is now needed and may be possible thanks to more data becoming available in the growing public archives.

Publisher

MDPI AG

Subject

Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3