Evidence for Multiple Shocks from the γ-Ray Emission of RS Ophiuchi

Author:

Diesing RebeccaORCID,Metzger Brian D.ORCID,Aydi EliasORCID,Chomiuk LauraORCID,Vurm IndrekORCID,Gupta SiddharthaORCID,Caprioli DamianoORCID

Abstract

Abstract In 2021 August, the Fermi Large Area Telescope, H.E.S.S., and MAGIC detected GeV and TeV γ-ray emission from an outburst of recurrent nova RS Ophiuchi. This detection represents the first very high-energy γ-rays observed from a nova, and it opens a new window to study particle acceleration. Both H.E.S.S. and MAGIC described the observed γ-rays as arising from a single, external shock. In this paper, we perform detailed, multi-zone modeling of RS Ophiuchi’s 2021 outburst, including a self-consistent prescription for particle acceleration and magnetic field amplification. We demonstrate that, contrary to previous work, a single shock cannot simultaneously explain RS Ophiuchi’s GeV and TeV emission, in particular the spectral shape and distinct light-curve peaks. Instead, we put forward a model involving multiple shocks that reproduces the observed γ-ray spectrum and temporal evolution. The simultaneous appearance of multiple distinct velocity components in the nova optical spectrum over the first several days of the outburst supports the presence of distinct shocks, which may arise either from the strong latitudinal dependence of the density of the external circumbinary medium (e.g., in the binary equatorial plane versus the poles) or due to internal collisions within the white dwarf ejecta (which power the γ-ray emission in classical novae).

Funder

National Aeronautics and Space Administration

National Science Foundation

Eesti Teadusagentuur

EC ∣ European Regional Development Fund

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3