Time-resolved hadronic particle acceleration in the recurrent nova RS Ophiuchi

Author:

,Aharonian F.123,Ait Benkhali F.4,Angüner E. O.5,Ashkar H.6,Backes M.78,Baghmanyan V.9,Barbosa Martins V.10,Batzofin R.11,Becherini Y.1213,Berge D.10,Bernlöhr K.2,Bi B.14,Böttcher M.8,Boisson C.15,Bolmont J.16,de Bony de Lavergne M.17,Breuhaus M.2,Brose R.1,Brun F.18,Caroff S.16,Casanova S.9,Cerruti M.12,Chand T.8,Chen A.11,Cotter G.19,Damascene Mbarubucyeye J.10,Djannati-Ataï A.12,Dmytriiev A.15,Doroshenko V.14,Duffy C.19,Egberts K.20,Ernenwein J.-P.5,Fegan S.6,Feijen K.21,Fiasson A.17,Fichet de Clairfontaine G.15,Fontaine G.6,Füßling M.10,Funk S.22,Gabici S.12,Gallant Y. A.23,Ghafourizadeh S.4,Giavitto G.10,Giunti L.1218,Glawion D.22,Glicenstein J. F.18,Grondin M.-H.24,Hermann G.2,Hinton J. A.2,Hörbe M.19,Hofmann W.2,Hoischen C.20,Holch T. L.10,Holler M.25,Horns D.26,Huang Zhiqiu2,Jamrozy M.27,Jankowsky F.4,Jung-Richardt I.22,Kasai E.7,Katarzyński K.28,Katz U.22,Khangulyan D.29,Khélifi B.12,Klepser S.10,Kluźniak W.30,Komin Nu.11,Konno R.10,Kosack K.18,Kostunin D.10,Le Stum S.5,Lemière A.12,Lemoine-Goumard M.24,Lenain J.-P.16,Leuschner F.14,Lohse T.31,Luashvili A.15,Lypova I.4,Mackey J.1,Malyshev D.14,Malyshev D.22,Marandon V.2,Marchegiani P.11,Marcowith A.23,Martí-Devesa G.25,Marx R.4,Maurin G.17,Meyer M.26,Mitchell A.222,Moderski R.30,Mohrmann L.2,Montanari A.18,Moulin E.18,Muller J.6,Murach T.10,Nakashima K.22,de Naurois M.6,Nayerhoda A.9,Niemiec J.9,Priyana Noel A.27,O’Brien P.32,Ohm S.10,Olivera-Nieto L.2,de Ona Wilhelmi E.10,Ostrowski M.27,Panny S.25,Panter M.2,Parsons R. D.31,Peron G.2,Pita S.12,Poireau V.17,Prokhorov D. A.33,Prokoph H.10,Pühlhofer G.14,Punch M.1213,Quirrenbach A.4,Reichherzer P.18,Reimer A.25,Reimer O.25,Renaud M.23,Reville B.2,Rieger F.2,Rowell G.21,Rudak B.30,Rueda Ricarte H.18,Ruiz-Velasco E.2,Sahakian V.34,Sailer S.2,Salzmann H.14,Sanchez D. A.17,Santangelo A.14,Sasaki M.22,Schäfer J.22,Schüssler F.18,Schutte H. M.8,Schwanke U.31,Senniappan M.13,Shapopi J. N. S.7,Simoni R.33,Sinha A.23,Sol H.15,Specovius A.22,Spencer S.19,Stawarz Ł.27,Steinmassl S.2,Steppa C.20,Takahashi T.35,Tanaka T.36,Taylor A. M.10,Terrier R.12,Thorpe-Morgan C.14,Tsirou M.2,Tsuji N.37,Tuffs R.2,Uchiyama Y.29,Unbehaun T.22,van Eldik C.22,van Soelen B.38,Veh J.22,Venter C.8,Vink J.33,Wagner S. J.4,Werner F.2,White R.2,Wierzcholska A.9,Wong Yu Wun22,Yusafzai A.22,Zacharias M.815,Zargaryan D.13,Zdziarski A. A.30,Zech A.15,Zhu S. J.10,Zouari S.12,Żywucka N.8

Affiliation:

1. Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland.

2. Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany.

3. High Energy Astrophysics Laboratory, Russian-Armenian University (RAU), 123 Hovsep Emin St Yerevan 0051, Armenia.

4. Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany.

5. Aix Marseille Université, Centre national de la recherche scientifique (CNRS)/Institut National de Physique Nucléaire et Physique des Particules (IN2P3), Centre de Physique des Particules de Marseille (CPPM), Marseille, France.

6. Laboratoire Leprince-Ringuet, École Polytechnique, CNRS, Institut Polytechnique de Paris, F-91128 Palaiseau, France.

7. University of Namibia, Department of Physics, Private Bag 13301, Windhoek 10005, Namibia.

8. Centre for Space Research, North-West University, Potchefstroom 2520, South Africa.

9. Instytut Fizyki Jdrowej Polskiej Akademii Nauk (PAN), ul. Radzikowskiego 152, 31-342 Kraków, Poland.

10. Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738, Germany.

11. School of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2050 South Africa.

12. Université de Paris, CNRS, Astroparticule et Cosmologie, F-75013 Paris, France.

13. Department of Physics and Electrical Engineering, Linnaeus University, 351 95 Växjö, Sweden.

14. Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany.

15. Laboratoire Univers et Théories, Observatoire de Paris, Université PSL, CNRS, Université de Paris, 92190 Meudon, France.

16. Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), 4 Place Jussieu, F-75252 Paris, France.

17. Université Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules - IN2P3, 74000 Annecy, France.

18. Institute for Research on the Fundamental Laws of the Universe (IRFU), Commisariat à l’énergie atomique (CEA), Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.

19. University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK.

20. Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D 14476 Potsdam, Germany.

21. School of Physical Sciences, University of Adelaide, Adelaide 5005, Australia.

22. Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany.

23. Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, CC 72, Place Eugène Bataillon, F-34095 Montpellier Cedex 5, France.

24. Université Bordeaux, CNRS, Laboratoire de Physique des Deux Infinis (LP2i), Bordeaux, Joint Research Unit (UMR 5797), F-33170 Gradignan, France.

25. Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria.

26. Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany.

27. Obserwatorium Astronomiczne, Uniwersytet Jagielloński, ul. Orla 171, 30-244 Kraków, Poland.

28. Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland.

29. Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan.

30. Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ul. Bartycka 18, 00-716 Warsaw, Poland.

31. Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, D 12489 Berlin, Germany.

32. Department of Physics and Astronomy, The University of Leicester, University Road, Leicester, LE1 7RH, UK.

33. Gravitation and Astroparticle Physics at the University of Amsterdam (GRAPPA), Anton Pannekoek Institute for Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands.

34. Yerevan Physics Institute, 2 Alikhanian Brothers St., 375036 Yerevan, Armenia.

35. Kavli Institute for the Physics and Mathematics of the Universe (World Premier International Research Center Initiative (WPI)), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba, 277-8583, Japan.

36. Department of Physics, Konan University, 8-9-1 Okamoto, Higashinada, Kobe, Hyogo 658-8501, Japan.

37. Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

38. Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa.

Abstract

Recurrent novae are repeating thermonuclear explosions in the outer layers of white dwarfs, due to the accretion of fresh material from a binary companion. The shock generated when ejected material slams into the companion star’s wind can accelerate particles. We report very-high-energy (VHE; 100   giga–electron volts ) gamma rays from the recurrent nova RS Ophiuchi, up to 1 month after its 2021 outburst, observed using the High Energy Stereoscopic System (H.E.S.S.). The temporal profile of VHE emission is similar to that of lower-energy giga–electron volt emission, indicating a common origin, with a 2-day delay in peak flux. These observations constrain models of time-dependent particle energization, favoring a hadronic emission scenario over the leptonic alternative. Shocks in dense winds provide favorable environments for efficient acceleration of cosmic rays to very high energies.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Reference70 articles.

1. Gamma-Ray Emission Concurrent with the Nova in the Symbiotic Binary V407 Cygni

2. Fermi establishes classical novae as a distinct class of gamma-ray sources

3. New Insights into Classical Novae

4. R. K. Barry et al . “On the distance of RS Ophiuchi” in RS Ophiuchi (2006) and the Recurrent Nova Phenomenon A. Evans M. F. Bode T. J. O’Brien M. J. Darnley Eds. vol. 401 of Astronomical Society of the Pacific Conference Series (Astronomical Society of the Pacific 2008) pp. 52–60.

5. Gaia Data Release 2

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. X-Rays from RS Ophiuchi’s 2021 Eruption: Shocks In and Out of Ionization Equilibrium;The Astrophysical Journal;2024-01-01

2. Current status and operation of the H.E.S.S. array of imaging atmospheric Cherenkov telescopes;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-10

3. H.E.S.S.: The High Energy Stereoscopic System;Handbook of X-ray and Gamma-ray Astrophysics;2023-09-30

4. The RS Oph Outburst of 2021 Monitored in X-Rays with NICER;The Astrophysical Journal;2023-09-01

5. Hadronic versus Leptonic Origin of Gamma-Ray Emission from Supernova Remnants;The Astrophysical Journal;2023-08-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3