Abstract
Abstract
The recurrent nova RS Ophiuchi (RS Oph) underwent its most recent eruption on 2021 August 8 and became the first nova to produce both detectable GeV and TeV emission. We used extensive X-ray monitoring with the Neutron Star Interior Composition Explorer Mission (NICER) to model the X-ray spectrum and probe the shock conditions throughout the 2021 eruption. The rapidly evolving NICER spectra consisted of both line and continuum emission that could not be accounted for using a single-temperature collisional equilibrium plasma model with an absorber that fully covered the source. We successfully modeled the NICER spectrum as a nonequilibrium ionization collisional plasma with partial covering absorption. The temperature of the nonequilibrium plasma shows a peak on day 5 with a kT of approximately 24 keV. The increase in temperature during the first five days could have been due to increasing contribution to the X-ray emission from material behind fast polar shocks or a decrease is the amount of energy being drained from the shocks into particle acceleration during that period. The absorption showed a change from fully covering the source to having a covering fraction of roughly 0.4, suggesting a geometrical evolution of the shock region within the complex global distribution of the circumstellar material. These findings show evidence of the ejecta interacting with some dense equatorial shell initially, and with less dense material in the bipolar regions at later times during the eruption.
Funder
National Aeronautics and Space Administration
Publisher
American Astronomical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献