Early-time γ-ray constraints on cosmic-ray acceleration in the core-collapse SN 2023ixf with the Fermi Large Area Telescope

Author:

Martí-Devesa G.ORCID,Cheung C. C.ORCID,Di Lalla N.,Renaud M.,Principe G.,Omodei N.,Acero F.

Abstract

Context. While supernova remnants (SNRs) have been considered the most relevant Galactic cosmic ray (CR) accelerators for decades, core-collapse supernovae (CCSNe) could accelerate particles during the earliest stages of their evolution and hence contribute to the CR energy budget in the Galaxy. Some SNRs have indeed been associated with TeV γ-rays, yet proton acceleration efficiency during the early stages of an SN expansion remains mostly unconstrained. Aims. The multi-wavelength observation of SN 2023ixf, a Type II supernova (SN) in the nearby galaxy M 101 (at a distance of 6.85 Mpc), opens the possibility to constrain CR acceleration within a few days after the collapse of the red super-giant stellar progenitor. With this work, we intend to provide a phenomenological, quasi-model-independent constraint on the CR acceleration efficiency during this event at photon energies above 100 MeV. Methods. We performed a maximum-likelihood analysis of γ-ray data from the Fermi Large Area Telescope up to one month after the SN explosion. We searched for high-energy, non-thermal emission from its expanding shock, and estimated the underlying hadronic CR energy reservoir assuming a power-law proton distribution consistent with standard diffusive shock acceleration. Results. We do not find significant γ-ray emission from SN 2023ixf. Nonetheless, our non-detection provides the first limit on the energy transferred to the population of hadronic CRs during the very early expansion of a CCSN. Conclusions. Under reasonable assumptions, our limits would imply a maximum efficiency on the CR acceleration of as low as 1%, which is inconsistent with the common estimate of 10% in generic SNe. However, this result is highly dependent on the assumed geometry of the circumstellar medium, and could be relaxed back to 10% by challenging spherical symmetry. Consequently, a more sophisticated, inhomogeneous characterisation of the shock and the progenitor’s environment is required before establishing whether or not Type II SNe are indeed efficient CR accelerators at early times.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3