Symmetrical Simulation Scheme for Anomaly Detection in Autonomous Vehicles Based on LSTM Model

Author:

Alsulami Abdulaziz A.ORCID,Abu Al-Haija QasemORCID,Alqahtani AliORCID,Alsini RaedORCID

Abstract

Nowadays, technological advancement has transformed traditional vehicles into Au-tonomous Vehicles (A.V.s). In addition, in our daily lives, A.V.s play an important role since they are considered an essential component of smart cities. A.V. is an intelligent vehicle capable of main-taining safe driving by avoiding crashes caused by drivers. Unlike traditional vehicles, which are fully controlled and operated by humans, A.V.s collect information about the outside environment using sensors to ensure safe navigation. Furthermore, A.V.s reduce environmental impact because they usually use electricity to operate instead of fossil fuel, thus decreasing the greenhouse gasses. However, A.V.s could be threatened by cyberattacks, posing risks to human life. For example, re-searchers reported that Wi-Fi technology could be vulnerable to cyberattacks through Tesla and BMW AVs. Therefore, more research is needed to detect cyberattacks targeting the components of A.V.s to mitigate their negative consequences. This research will contribute to the security of A.V.s by detecting cyberattacks at the early stages. First, we inject False Data Injection (FDI) attacks into an A.V. simulation-based system developed by MathWorks. Inc. Second, we collect the dataset generated from the simulation model after integrating the cyberattack. Third, we implement an intelligent symmetrical anomaly detection method to identify FDI attacks targeting the control system of the A.V. through a compromised sensor. We use long short-term memory (LSTM) deep networks to detect FDI attacks in the early stage to ensure the stability of the operation of A.V.s. Our method classifies the collected dataset into two classifications: normal and anomaly data. The ex-perimental result shows that our proposed model's accuracy is 99.95%. To this end, the proposed model outperforms other state-of-the-art models in the same study area.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3