Design Procedure for Real-Time Cyber–Physical Systems Tolerant to Cyberattacks

Author:

Paredes Carlos M.1ORCID,Martínez Castro Diego2ORCID,González Potes Apolinar3ORCID,Rey Piedrahita Andrés4ORCID,Ibarra Junquera Vrani5ORCID

Affiliation:

1. Facultad de Ingeniería, Universidad de San Buenaventura, Cali 760030, Colombia

2. Facultad de Ingeniería, Universidad Autónoma de Occidente, Cali 760030, Colombia

3. Facultad de Ingeniería Mecánica y Eléctrica, Universidad de Colima, Colima 28400, Mexico

4. Facultad de Ingeniería, Unidad Central del Valle del Cauca, Tuluá 763022, Colombia

5. Facultad de Ciencias Químicas, Universidad de Colima, Colima 28400, Mexico

Abstract

Modern industrial automation supported by Cyber–Physical Systems (CPSs) requires high flexibility, which is achieved through increased interconnection between modules. This interconnection introduces a layer of symmetry into the design and operation of CPSs, balancing the distribution of tasks and resources across the system and streamlining the flow of information. However, this adaptability also exposes control systems to security threats, particularly through novel communication links that are vulnerable to cyberattacks. Traditional strategies may have limitations in these applications. This research proposes a design approach for control applications supported by CPSs that incorporates cyberattack detection and tolerance strategies. Using a modular and adaptive approach, the system is partitioned into microservices for scalability and resilience, allowing structural symmetry to be maintained. Schedulability assessments ensure that critical timing constraints are met, improving overall system symmetry and performance. Advanced cyberattack detection and isolation systems generate alarms and facilitate rapid response with replicas of affected components. These replicas enable the system to recover from and tolerate cyberattacks, maintaining uninterrupted operation and preserving the balanced structure of the system. In conclusion, the proposed approach addresses the security challenges in CPS-based control applications and provides an integrated and robust approach to protect industrial automation systems from cyber threats. A case study conducted at a juice production facility in Colima, México, demonstrated how the architecture can be applied to complex processes such as pH control, from simulation to industrial implementation. The study highlighted a plug-and-play approach, starting with component definitions and relationships, and extending to technology integration, thereby reinforcing symmetry and efficiency within the system.

Funder

Universidad Central del Valle del Cauca

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3