On Evaluating Black-Box Explainable AI Methods for Enhancing Anomaly Detection in Autonomous Driving Systems

Author:

Nazat Sazid1ORCID,Arreche Osvaldo1ORCID,Abdallah Mustafa2ORCID

Affiliation:

1. Electrical and Computer Engineering Department, Purdue School of Engineering and Technology, Indiana University—Purdue University Indianapolis, Indianapolis, IN 46202, USA

2. Computer and Information Technology Department, Purdue School of Engineering and Technology, Indiana University—Purdue University Indianapolis, Indianapolis, IN 46202, USA

Abstract

The recent advancements in autonomous driving come with the associated cybersecurity issue of compromising networks of autonomous vehicles (AVs), motivating the use of AI models for detecting anomalies on these networks. In this context, the usage of explainable AI (XAI) for explaining the behavior of these anomaly detection AI models is crucial. This work introduces a comprehensive framework to assess black-box XAI techniques for anomaly detection within AVs, facilitating the examination of both global and local XAI methods to elucidate the decisions made by XAI techniques that explain the behavior of AI models classifying anomalous AV behavior. By considering six evaluation metrics (descriptive accuracy, sparsity, stability, efficiency, robustness, and completeness), the framework evaluates two well-known black-box XAI techniques, SHAP and LIME, involving applying XAI techniques to identify primary features crucial for anomaly classification, followed by extensive experiments assessing SHAP and LIME across the six metrics using two prevalent autonomous driving datasets, VeReMi and Sensor. This study advances the deployment of black-box XAI methods for real-world anomaly detection in autonomous driving systems, contributing valuable insights into the strengths and limitations of current black-box XAI methods within this critical domain.

Funder

Lilly Endowment

Indiana University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3