Single and Mixed Sensory Anomaly Detection in Connected and Automated Vehicle Sensor Networks

Author:

Kim Tae Hoon1,Ojo Stephen2ORCID,Krichen Moez3,Alamro Meznah A.4ORCID

Affiliation:

1. School of Information and Electronic Engineering, Zhejiang University of Science and Technology, No. 318, Hangzhou 310023, China

2. Department of Electrical and Computer Engineering, College of Engineering, Anderson University, Anderson, SC 29621, USA

3. ReDCAD Laboratory, University of Sfax, Sfax 3038, Tunisia

4. Department of Information Technology, College of Computer and Information Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

Connected and automated vehicles (CAVs), integrated with sensors, cameras, and communication networks, are transforming the transportation industry and providing new opportunities for consumers to enjoy personalized and seamless experiences. The fast proliferation of connected vehicles on the road and the growing trend of autonomous driving create vast amounts of data that need to be analyzed in real time. Anomaly detection in CAVs refers to identifying any unusual or unforeseen behavior in the data generated by vehicles’ various sensors and components. Anomaly detection aims to identify any unusual behavior that might indicate a problem or a malfunction in the vehicle. To identify and detect anomalies efficiently, a method must deal with noisy data, missing data, dynamic frequency data, and low- and high-magnitude data, and it must be accurate enough to detect anomalies in a dynamic sensor streaming environment. Therefore, this paper proposes a fast and efficient hard-voting-based technique named FT-HV, comprising three fine-tuned machine learning algorithms to detect and classify anomaly behavior in CAVs for single and mixed sensory datasets. In experiments, we evaluate our approach on the benchmark Sensor Anomaly dataset that contains data from various vehicle sensors at low and high magnitudes. Further, it contains single and mixed anomaly types that are challenging to detect and identify. The results reveal that the proposed approach outperforms existing solutions for detecting single anomaly types at low magnitudes and detecting mixed anomaly types in all settings. Furthermore, this research is envisioned to help detect and identify anomalies early and efficiently promote safer and more resilient CAVs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3