Development of Noncircular Wheel “TFW” for Traveling over a Single Step only by Rotational Movement

Author:

Oki Tomohiko, ,Morita Toshio

Abstract

Wheeled vehicles are used daily because they have high movement efficiency, simple structures and low cost. However, their travel ranges may be limited due to the low traveling performance of wheels when they encounter a step. Variousmovement mechanisms have been developed to solve this issue, but they have become complicated and heavy in attempts to meet each design condition, so they are hard to use daily in some cases. The authors therefore devised a simple, low cost movement mechanism the TFW(Transformable Flexible Wheel) that can travel over a step without special controls. This is a noncircular wheel that can travel over a step without slipping by denting the outer circumference of the wheel when it comes into contact with a step and catching the step with the internal mechanism of the TFW. In this paper, the outline of the structure and movement of the TFW is discussed. In addition, its effectiveness is verified through the creation of two vehicles, the simple prototype SRIDERzero and the experimental model SRIDER, to prove that the traveling performance of the TFW over a step is superior to that of conventional wheels and to demonstrate the basic movements of the TFW.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extreme High Step Climbing: Nonlinear Analysis of a Highly-Deformable- Tracked Robot;IEEE/ASME Transactions on Mechatronics;2023-04

2. Anisotropic-Stiffness Belt in Mono wheeled Flexible Track for Rough Terrain Locomotion;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

3. Mono-Wheeled Flexible Track Capable of Climbing High Steps and Adapting to Rough Terrains;2020 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR);2020-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3