High-Precision and Fast LiDAR Odometry and Mapping Algorithm

Author:

Wang Qingshan,Zhang Jun,Liu Yuansheng,Zhang Xinchen, ,

Abstract

LiDAR SLAM technology is an important method for the accurate navigation of automatic vehicles and is a prerequisite for the safe driving of automatic vehicles in the unstructured road environment of complex parks. This paper proposes a LiDAR fast point cloud registration algorithm that can realize fast and accurate localization and mapping of automatic vehicle point clouds through a combination of a normal distribution transform (NDT) and point-to-line iterative closest point (PLICP). First, the NDT point cloud registration algorithm is applied for the rough registration of point clouds between adjacent frames to achieve a rough estimate of the pose of automatic vehicles. Then, the PLICP point cloud registration algorithm is adopted to correct the rough registration result of the point cloud. This step completes the precise registration of the point cloud and achieves an accurate estimate of the pose of the automatic vehicle. Finally, cloud registration is accumulated over time, and the point cloud information is continuously updated to construct the point cloud map. Through numerous experiments, we compared the proposed algorithm with PLICP. The average number of iterations of the point cloud registration between adjacent frames was reduced by 6.046. The average running time of the point cloud registration between adjacent frames decreased by 43.05156 ms. The efficiency of the point cloud registration calculation increased by approximately 51.7%. By applying the KITTI dataset, the computational efficiency of NDT-ICP was approximately 60% higher than that of LeGO-LOAM. The proposed method realizes the accurate localization and mapping of automatic vehicles relying on vehicle LiDAR in a complex park environment and was applied to a Small Cyclone automatic vehicle. The results indicate that the proposed algorithm is reliable and effective.

Funder

Demonstration and verification of high-precision map and fusion positioning

Autonomous driving real-time urban road scene understanding based on visual computing

Key technology for multi-view video information acquisition and localization of autonomous vehicle

Beijing Municipal High-level Innovative Team Construction Plan for High-level Teacher Team Construction Support Program

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. LiDAR odometry survey: recent advancements and remaining challenges;Intelligent Service Robotics;2024-02-09

2. Vehicle Localization in a Completed City-Scale 3D Scene Using Aerial Images and an On-Board Stereo Camera;Remote Sensing;2023-08-04

3. High Precision Odometer and Mapping Algorithm Based on Multi Lidar Fusion;Proceedings of International Conference on Image, Vision and Intelligent Systems 2022 (ICIVIS 2022);2023

4. Localization Method Using Camera and LiDAR and its Application to Autonomous Mowing in Orchards;Journal of Robotics and Mechatronics;2022-08-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3