Author:
Wang Qingshan,Zhang Jun,Liu Yuansheng,Zhang Xinchen, ,
Abstract
LiDAR SLAM technology is an important method for the accurate navigation of automatic vehicles and is a prerequisite for the safe driving of automatic vehicles in the unstructured road environment of complex parks. This paper proposes a LiDAR fast point cloud registration algorithm that can realize fast and accurate localization and mapping of automatic vehicle point clouds through a combination of a normal distribution transform (NDT) and point-to-line iterative closest point (PLICP). First, the NDT point cloud registration algorithm is applied for the rough registration of point clouds between adjacent frames to achieve a rough estimate of the pose of automatic vehicles. Then, the PLICP point cloud registration algorithm is adopted to correct the rough registration result of the point cloud. This step completes the precise registration of the point cloud and achieves an accurate estimate of the pose of the automatic vehicle. Finally, cloud registration is accumulated over time, and the point cloud information is continuously updated to construct the point cloud map. Through numerous experiments, we compared the proposed algorithm with PLICP. The average number of iterations of the point cloud registration between adjacent frames was reduced by 6.046. The average running time of the point cloud registration between adjacent frames decreased by 43.05156 ms. The efficiency of the point cloud registration calculation increased by approximately 51.7%. By applying the KITTI dataset, the computational efficiency of NDT-ICP was approximately 60% higher than that of LeGO-LOAM. The proposed method realizes the accurate localization and mapping of automatic vehicles relying on vehicle LiDAR in a complex park environment and was applied to a Small Cyclone automatic vehicle. The results indicate that the proposed algorithm is reliable and effective.
Funder
Demonstration and verification of high-precision map and fusion positioning
Autonomous driving real-time urban road scene understanding based on visual computing
Key technology for multi-view video information acquisition and localization of autonomous vehicle
Beijing Municipal High-level Innovative Team Construction Plan for High-level Teacher Team Construction Support Program
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference34 articles.
1. K. M. Wurm, C. Stachniss, and G. Grisetti, “Bridging the Gap Between Feature- and Grid-based SLAM,” Robotics and Autonomous Systems, Vol.58, No.2, pp. 140-148, 2010.
2. A. Eliazar and R. Parr, “DP-SLAM: Fast, Robust Simultainous Localization and Mapping Without Predetermined Landmarks,” Proc. of the 18th Int. Joint Conf. on Artificial Intelligence (IJCAI-03), pp. 1135-1142, 2003.
3. S. Thrun, W. Burgard, and D. Fox, “Probabilistic Robotics,” MIT Press, 2005.
4. M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, “iSAM2: Incremental smoothing and mapping using the bayes tree,” The Int. J. of Robotics Research, Vol.31, pp. 217-236, 2012.
5. R. Zlot and M. Bosse, “Efficient large-scale 3D mobile mapping and surface reconstruction of an underground mine,” The 7th Int. Conf. on Field and Service Robots, 2012.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献