Localization Method Using Camera and LiDAR and its Application to Autonomous Mowing in Orchards

Author:

Kurita Hiroki,Oku Masaki,Nakamura Takeshi,Yoshida Takeshi,Fukao Takanori, ,

Abstract

This paper presents a localization method using deep learning and light detection and ranging (LiDAR) for unmanned ground vehicle (UGV) in field environment. We develop a sensor fusion algorithm that UGV recognizes natural objects from RGB camera using deep learning and measures the distance to the recognized objects with LiDAR. UGV calculates its position relative to the objects, creates a reference path, and then executes path following control. The method is applied to autonomous mowing operation in orchard. A mower is tracked by UGV. UGV needs to run along a tree row keeping an appropriate distance from tree trunks, by which the mowing arm of the tracked mower properly touches the trunks. Field experiments are conducted in pear and apple orchards. UGV localizes self position relative to trees and performs autonomous mowing successfully. The results show that the presented method is effective.

Funder

Biooriented Technology Research Advancement Institution

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data-Driven Auto Tuning for Controller Gain of Path Following Control;IEEJ Transactions on Electronics, Information and Systems;2024-08-01

2. Implementation and Assessment of an Autonomous Ground Vehicle (AGV) for On-Field Agricultural Operations;Lecture Notes in Civil Engineering;2024

3. VISUAL LIDAR ODOMETRY USING TREE TRUNK DETECTION AND LIDAR LOCALIZATION;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-13

4. An Improved UWB/IMU Tightly Coupled Positioning Algorithm Study;Sensors;2023-06-26

5. Localization System for Vehicle Navigation Based on GNSS/IMU Using Time-Series Optimization with Road Gradient Constrain;Journal of Robotics and Mechatronics;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3