Author:
Kurita Hiroki,Oku Masaki,Nakamura Takeshi,Yoshida Takeshi,Fukao Takanori, ,
Abstract
This paper presents a localization method using deep learning and light detection and ranging (LiDAR) for unmanned ground vehicle (UGV) in field environment. We develop a sensor fusion algorithm that UGV recognizes natural objects from RGB camera using deep learning and measures the distance to the recognized objects with LiDAR. UGV calculates its position relative to the objects, creates a reference path, and then executes path following control. The method is applied to autonomous mowing operation in orchard. A mower is tracked by UGV. UGV needs to run along a tree row keeping an appropriate distance from tree trunks, by which the mowing arm of the tracked mower properly touches the trunks. Field experiments are conducted in pear and apple orchards. UGV localizes self position relative to trees and performs autonomous mowing successfully. The results show that the presented method is effective.
Funder
Biooriented Technology Research Advancement Institution
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference14 articles.
1. United Nations, Department of Economic and Social Affairs, Population Division, “World Population Prospects 2019 Highlights,” 2019.
2. Y. Nagasaka, N. Umeda, Y. Kanetani, K. Taniwaki, and Y. Sasaki, “Automated rice transplanter using global positioning and gyroscopes,” Computers and Electronics in Agriculture, Vol.43, No.3, pp. 222-234, 2004.
3. R. Takai, O. Barawid Jr., K. Ishii, and N. Noguchi, “Development of crawler-type robot tractor based on GPS and IMU,” Proc. of the 3rd IFAC Int. Conf. AGRICONTROL 2010, A3-5, 2010.
4. H. Kurita, M. Iida, W. Cho, and M. Suguri, “Rice autonomous Harvesting: Operation Framework,” J. of Field Robotics, Vol.34, No.6, pp. 1084-1099, 2017.
5. Q. Wang, J. Zhang, Y. Liu, and X. Zhang, “High-Precision and Fast LiDAR Odometry and Mapping Algorithm,” J. Adv. Comput. Intell. Intell. Inform., Vol.26, No.2, pp. 206-216, 2022.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献