Graphene Nanomechanical Resonator Mass Sensing of Mixed H2/Ar Gas

Author:

Muruganathan Manoharan,Seto Fumihiro,Mizuta Hiroshi, ,

Abstract

We report the local top-gated graphene resonator inertial mass sensing of mixed H2/Ar gas. The graphene resonator is fabricated with monolayer graphene. The fabricated resonator dimensions are 900 nm in length and 500 nm in width. Measurements of the fabricated resonator are performed using a co-planar structure probe and radio-frequency (RF) connectors. At the vacuum condition of the chamber, the resonant frequency of the doubly clamped graphene resonator is measured as 94.3 MHz with the quality factor of 42.2, based on transmission S-parameter characterization. The measured resonant frequency is consistent with the theoretical calculation based on the continuum model for the graphene resonator. When the chamber pressure is increased to 1.1×10-1 Pa by injecting mixed H2/Ar gas, the resonant frequency of the device is downshifted by 4.32 MHz to 89.98 MHz and the quality factor is reduced to 22.5. As the mass of the graphene resonator is increased by the adsorption of mixed gas molecules adsorption, the resonant frequency is downshifted further. The detected mass of the adsorbed gas molecules is calculated as ∼15 attograms.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3