Affiliation:
1. University of Michigan–Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University 1 , Shanghai 200240, China
2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University 2 , Shanghai 200240, China
3. State Key Laboratory of Radio Frequency Heterogeneous Integration, Shanghai Jiao Tong University 3 , Shanghai 200240, China
Abstract
Two-dimensional (2D) materials are promising for atomic-scale, ultralow-power, and highly tunable resonant nanoelectromechanical systems (NEMS) in sensing, communications, and computing. Toward these applications, a broad and controllable linear dynamic range (DR) is desirable for increasing the signal-to-noise ratio (SNR) and reliability. Here, we develop a comprehensive strain-enhanced DR model for 2D NEMS resonators, which is experimentally verified through the tuning of DRs in 2D molybdenum disulfide (MoS2) and molybdenum ditelluride (MoTe2) NEMS resonators using gate-induced strain. We find that the resonance frequency, quality factor, and nonlinear coefficient are all tuned by the gate voltage, which enhance the DR together. Through the guidance of the DR tuning model, we demonstrate DR enhancement by up to 26.9 dB (from 69.5 to 96.4 dB) in a 2D MoS2 NEMS resonator by properly tuning the gate voltage, leading to a theoretical mass resolution of 26 yg (1 yg = 10−24 g). To accurately extract the DR, we further differentiate the quality factors for thermomechanical resonances and for resonances at the largest linear amplitude. This gate-enhanced DR model is also verified using a MoTe2 resonator, with DR enhancement of 7 dB (91.2 to 98.2 dB). The results provide a promising pathway for accurately predicting and optimizing the DRs in NEMS resonators, toward enhanced sensitivity and SNR in mass sensing, radio frequency signal processing, memory, and computing applications.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献