Abstract
SiC, GaN, and diamond are known as super-hard-to-process substrate for next-generation green devices. In this paper, we report on some breakthrough in developing highly efficient processing for such hard-to-process materials, for which we propose improvements in conventional processing, and innovative processing. As part of our project, we developed a “dilatancy pad®” that can efficiently produce high-quality surfaces as well as a high-rigidity, high-speed and high-pressure processing machine. We also designed and prototyped “plasma fusion CMP®,” which is an innovative processing technology fusing CMP (Chemical Mechanical Polishing) with P-CVM (Plasma Chemical Vaporization Machining) to machine super-hard diamond substrates that are considered indispensable for future devices. Before the advent of “singularities” by 2045, super-hard-to-process substrates and ultra-precision polishing technology will become more and more essential.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference13 articles.
1. I. Akasaki and H. Matsunami (Eds.), “Wade gap Semiconductors,” Baifukan, 2013 (in Japanese).
2. T. Doi, K. Seshimo et al., “Building of super high-efficiency technology based on innovative concept (Establishment of effective polishing process of SiC substrate using Dilatancy pad tool with bowl feed method),” Trans. of the JSME, Vol.81, No.824, pp. 1-12, 2015 (in Japanese).
3. T. Doi, K. Seshimo et al., “Smart polishing of hard-to-machine materials with an innovative dilatancy pad under high-pressure, high-speed, immersed condition,” ECS J. S.S Sci. and Tec., Vol.5, No.10, pp. 598-607, 2016.
4. T. K. Doi, “Open innovation for a brighter future,” Nature, naturejobs13, March 21, 2013.
5. K. Shiozawa, Y. Sano, T. Doi, S. Kurokawa, H. Aida et al., “Development of the innovative CMP/P-CVM combined appatus (2nd report) – Basic A-type and its processing characteristic –,” Proc. of the fall meeting of JSPE, p. 273, 2014 (in Japanese).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献