Author:
Ribuan Mohamed Najib, ,Suzumori Koichi,Wakimoto Shuichi
Abstract
This paper describes a new pneumatic rubber leg mechanism for omnidirectional locomotion. The new mechanism was adopted from a pneumatic balloon actuator where translation and bending motions are produced as a result of balloon deformation. It was constructed using five chambers: one on the top and centered over four bottom chambers arranged in a square. Several possible designs were simulated to achieve the optimal design using a non-linear finite element analysis that considered the design parameters and the geometrical and material non-linearity of the elements. Prototyping was then performed using a rapid and efficient silicone rubber molding fabrication process based on computer-aided design and manufacturing. The experimental results were in good agreement with the analytical results. In conclusion, we have established a new rubber leg mechanism with a high degree of freedom to realize omnidirectional locomotion for a soft robot base, delicate object conveyance, and / or microscope stage applications.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference18 articles.
1. T. Fukuda, H. Hosokai, and M. Uemura, “Rubber gas actuator driven by hydrogen storage alloy for in-pipe inspection mobile robot with flexible structure,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1847-1852, 1989.
2. N. Yee and G. Coghill, “Modelling of a novel rotary pneumatic muscle,” Proc. Australiasian Conf. on Robotics and Automation, pp. 186-190, 27-29, Nov. 2002.
3. K. Iwata, K. Suzumori, and S. Wakimoto, “A method of designing and fabricating Mckibben muscle driven by 7 Mpa hydraulics,” Int. J. of Automation Technology, Vol.6, No.4, pp. 482-487, 2012.
4. K. Suzumori, S. Iikura, and H. Tanaka, “Flexible microactuator for miniature robots,” Proc. MEMS, pp. 204-209, 1991.
5. K. Suzumori, A. Koga, and R. Haneda, “Microfabrication of integrated FMAs using stereo lithography,” Proc. IEEE Workshop on MEMS, pp. 136-141, 1994.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献