Author:
Faudzi Ahmad Athif Mohd, ,Lazim Noor Hanis Izzuddin Mat,Suzumori Koichi, , ,
Abstract
This paper presents the modeling of a thin soft McKibben actuator using the system identification (SI) method and its force control. Procedures from the system identification method are used to create a mathematical model (transfer function) from the test data. The autoregressive with exogenous input (ARX) model was chosen as the model structure of the system. Next, a PSO-PID controller was proposed for the force control of the actuator. The simulation data were verified against the test data for the force control using PSO-PID and conventional PID. Results showed that the developed model represents the actual system by giving the same characteristics in the force control analysis in step, multi-step, and sinusoidal input.
Publisher
Fuji Technology Press Ltd.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Reference27 articles.
1. K. Suzumori, T. Maeda et al., “Fiberless flexible microactuator designed by finite-element method,” Mechatronics, IEEE/ASME Transactions on Vol.2, No.2, pp. 281-286, 1997.
2. K. Suzumori, T. Hama et al., “New pneumatic rubber actuators to assist colonoscope insertion,” Proc. IEEE Int. Conf. on Robotics and Automation, ICRA, pp. 1824-1829, 2006.
3. A. A. M. Faudzi, K. Suzumori, and S. Wakimoto, “Development of an Intelligent Pneumatic Cylinder for Distributed Physical Human-Machine Interaction,” Advanced Robotics Vol.23, pp. 203-225, 2009.
4. H. F Schulte, “The characteristics of the McKibben artificial muscle,” Appl. Extern. Power Prosthet. Orthetics, Vol.874, pp. 94-115, 1961.
5. I. N. A. Mohd Nordin, M. R. Muhammad Razif, A. A. M. Faudzi, E. Natarajan, K. Iwata, and K. Suzumori, “3-D finite-element analysis of fiber-reinforced soft bending actuator for finger flexion,” IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 128-133, 2013.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献