Omnidirectional Soft Robot Platform with Flexible Actuators for Medical Assistive Device

Author:

Ribuan Mohamed Najib, ,Wakimoto Shuichi,Suzumori Koichi,Kanda Takefumi, ,

Abstract

This manuscript explains the employment of flexible actuators to act as a soft robot and transporting agent to assist medical X-ray examinations. Although soft robots from silicone material can be transparence and a human compliance used as medical assistive devices, soft robots have some problems: they tend to be sluggish, have long and imprecise gait trajectories, and need their control parameters to be adjusted for motion diversion. A soft robot with omnidirectional locomotion has been created, one that has a combination of pneumatic rubber legs that form a soft robot platform and an associated hardware setup. Tests have confirmed its omnidirectional locomotion ability; it has a maximum speed of 6.90 mm/s in forward locomotion and a maximum payload of 70 g. These features indicate that the robot can be used as a medical assistive device for fluoroscopy examinations.

Publisher

Fuji Technology Press Ltd.

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference29 articles.

1. A. Matsuda, T. Matsuda, K. Katanoda, T. Sobue, H. Nishimoto, and The Japan Cancer Surveillance Research Group, “Cancer incidence and incidence rates in Japan in 2007: A study of 21 population-based cancer registries for the Monitoring of Cancer Incidence in Japan (MCIJ) project,” Jpn J Clin Oncol. 2013, Oxford Uni Press, Vol.43, No.3, pp. 329-336, 2013.

2. K. J. Lee, M. Inoue, T. Otani, M. Iwasaki, S. Sasazuki, and S. Tsugane, “Gastric cancer screening and subsequent risk of gastric cancer: A large-scale population-based cohort study, with a 13-year follow-up in Japan,” Int. J. Cancer 2006, Wiley InterScience, Vol.118, pp. 2315-2321, 2005.

3. K. Shibuya, K. Sumi, T. Watanabe, K. Suzumori, and H. Oka, “Development and usefulness evaluation of a remote control pressured pillow for prone position,” Japan Radiological Technologist J., Vol.61, No.738, 2014.

4. M. Iwamura, S. Wakimoto, K. Suzumori, H. Oka, and K. Sumi, “Fundamental tests of pneumatic soft devices for pushing abdomen in stomach X-ray examibation,” Proc. IEEE Int. Conf. on Robotics and Biomimetics, 2014.

5. M. Ribuan, K. Suzumori, and S. Wakimoto, “New pneumatic rubber leg mechanism for omnidirectional locomotion,” Int. J. Automation Technology, Vol.8, No.2, pp. 222-230, 2014.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3