Soft actuators-based skill training wearables: a review on the interaction modes, feedback types, VR scenarios, sensors utilization and applications

Author:

Ramasamy PriyankaORCID,Calderon-Sastre Enrique,Renganathan Gunarajulu,Das Swagata,Kurita Yuichi

Abstract

AbstractDexterity training helps improve our motor skills while engaging in precision tasks such as surgery in the medical field and playing musical instruments. In addition, post-stroke recovery also requires extensive dexterity training to recover the original motor skills associated with the affected portion of the body. Recent years have seen a rise in the usage of soft-type actuators to perform such training, giving higher levels of comfort, compliance, portability, and adaptability. Their capabilities of performing high dexterity and safety enhancement make them specific biomedical applications and serve as a sensitive tools for physical interaction. The scope of this article discusses the soft actuator types, characterization, sensing, and control based on the interaction modes and the 5 most relevant articles that touch upon the skill improvement models and interfacing nature of the task and the precision it demands. This review attempts to report the latest developments that prioritize soft materials over hard interfaces for dexterity training and prospects of end-user satisfaction.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3