Analysis and Experiment of a Bioinspired Multimode Octopod Robot

Author:

Sun Hongzhe,Wei Chaoran,Yao Yan-an,Wu Jianxu

Abstract

AbstractLegged robots use isolated footholds to support, which have the merit of good terrain trafficability but lack speed ability. In contrast, wheeled robots have the advantages of high speed and efficiency but only run on flat roads. To improve the moving speed and terrain adaptability of the legged robot, this paper proposes a bioinspired multimode octopod robot with rolling, walking, and obstacle-surmounting modes. First, inspired by the multimode locomotion of the Cebrennus rechenbergi spider, the high-speed mobility of the legged robot is realized in involute kick-rolling mode through the extendable appendages. Then, the foot and appendage trajectories are analyzed by kinematic method and optimized for walking stability. Based on the static and the kinematic analyses, the terrain adaptability is improved by adhesive obstacle-surmounting mode with the assistance of the appendages affiliated to the main feet. The deformable trunk with one DoF is designed to switch between three modes. Finally, a series of dynamic simulations and experiments are carried out to verify the theoretical analyses of the adhesive obstacle-surmounting mode and the mobility of the involute kick-rolling mode. It is shown that the multimode octopod robot can integrate the advantages of high speed and good terrain trafficability from different types of robots and is suitable for performing tasks in unstructured terrains.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Eight-legged Spider Robot Using Theo Jansen Mechanism;2024 6th International Conference on Energy, Power and Environment (ICEPE);2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3